Objectives The properties of brain tissue undergo dynamic changes during maturation. T1 relaxation time (T1), T2 relaxation time (T2), and proton density (PD) are now simultaneously quantifiable within a clinically acceptable time, using a synthetic magnetic resonance imaging (MRI) sequence. This study aimed to provide age-specific reference values for T1, T2, and PD in children, using synthetic MRI. Materials and Methods We included 89 children (median age, 18 months; range, 34 weeks of gestational age to 17 years) who underwent quantitative MRI, using a multidynamic, multiecho sequence on 3 T MRI, between December 2015 and November 2016, and had no abnormal MRI/neurologic assessment findings. T1, T2, and PD were simultaneously measured in each of the 22 defined white matter and gray matter regions of interest. The measured values were plotted against age, and a curve fitting model that best explained the age dependence of tissue values was identified. Age-specific regional tissue values were calculated using a fit equation. Results The tissue values of all brain regions, except cortical PD, decreased with increasing age, and the robust negative association was best explained by modified biexponential model of the form Tissue values = T1 × exp (−C1 × age) + T2 × exp (−C2 × age). The quality of fit to the modified biexponential model was high in white matter and deep gray matter (white matter, R2 = 97%–99% [T1], 88%–95% [T2], 88%–97% [PD]; deep gray matter, R2 = 96%–97% [T1], 96% [T2], 49%–88% [PD]; cortex, 70%–83% [T1], 87%–90% [T2], 5%–27% [PD]). The white matter and deep gray matter changed the most dynamically within the first year of life. Conclusions Our study provides age-specific regional reference values, from the neonate to adolescent, of T1, T2, and PD, which could be objective tools for assessment of normal/abnormal brain development using synthetic MRI. Received for publication September 7, 2017; and accepted for publication, after revision, October 22, 2017. Conflicts of interest and sources of funding: none declared. Supplemental digital contents are available for this article. Direct URL citations appear in the printed text and are provided in the HTML and PDF versions of this article on the journal's Web site (http://ift.tt/2kq7jVD). Correspondence to: Young Hun Choi, MD, Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 110–769, Republic of Korea. E-mail: iater@snu.ac.kr. Copyright © 2017 Wolters Kluwer Health, Inc. All rights reserved.
from Imaging via alkiviadis.1961 on Inoreader http://ift.tt/2BOVpZM
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
To evaluate the effect of Recurrence Score® results (RS; Oncotype DX® multigene assay ODX) on treatment recommendations by Swiss multidiscip...
-
Abstract Objective To evaluate Chinese medicine (CM) formula Bazheng Powder (八正散) as an alternative therapeutic option for female patients...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
Abstract Soil conditioners can be used to compensate for the insufficient soil nutrition and organic matter (OM) of arable soils. However, ...
-
Objectives Adult sagittal posture is established during childhood and adolescence. A flattened or hypercurved spine is associated with poore...
-
Ocular Vestibular Evoked Myogenic Potentials: Where Are We Now? Objective: Over the last decade, ocular vestibular evoked myogenic potential...
-
Related Articles Screening for Atrial Fibrillation using Economical and accurate TechnologY (SAFETY)-a pilot study. BMJ Open. 2017 Ja...
-
Abstract Objective To study the effects of Astragalus polysaccharide (APS), the primary effective component of the Chinese herb medicine A...
-
Publication date: Available online 6 January 2018 Source: Current Problems in Diagnostic Radiology Author(s): Mark D. Kovacs, Maximilian...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου