Andreev bound states (ABSs) are well-de ned many-body quantum states that emerge from the hybridization of individual quantum dot (QD) states with a superconductor and exhibit very rich and fundamental phenomena. We demonstrate several new electron transport phenomena mediated by ABSs that form on three-terminal carbon nanotube (CNT) QDs, with one superconducting (S) contact in the center and two adjacent normal metal (N) contacts. Three-terminal spectroscopy allows us to identify the coupling to the N contacts as the origin of the Andreev resonance (AR) linewidths and to determine the critical coupling strengths to S, for which a ground state (or quantum phase) transition in such S-QD systems can occur. In addition, we ascribe replicas of the lowest-energy ABS resonance to transitions between the ABS and odd-parity excited QD states, a process we call excited state ABS resonances. In the conductance between the two N contacts we find a characteristic pattern of positive and negative differential subgap conductance, which we explain by considering two nonlocal processes, the creation of Cooper pairs in S by electrons from both N terminals, and a novel transport mechanism called resonant ABS tunneling, possible only in multi-terminal QD devices. In the latter process, electrons are transferred via the ABS without effectively creating Cooper pairs in S. The three-terminal geometry also allows spectroscopy experiments with different boundary conditions, for example by leaving S floating. Surprisingly, we find that, depending on the boundary conditions and the device parameters, the experiments either show single-particle Coulomb blockade resonances, ABS characteristics, or both in the same measurements, seemingly contradicting the notion of ABSs replacing the single particle states as eigenstates of the QD. We qualitatively explain these results as originating from the nite time scale required for the coherent oscillations between the superposition states after a single electron tunneling event. These experiments demonstrate that three-terminal experiments on a single complex quantum object can also be useful to investigate charge dynamics otherwise not accessible due to the very high frequencies.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2ChVV33
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Family: Know the drill New Straits Times Online One of my sons had this so often that his tonsils were removed. ... However, for som...
-
UM-Chor1: establishment and characterization of the first validated clival chordoma cell line. J Neurosurg. 2017 Apr 21;:1-9 Authors:...
-
Publication date: Available online 10 May 2017 Source: Journal of Dairy Science Author(s): R.E. Vibart, M. Tavendale, D. Otter, B.H. Schw...
-
Abstract Cerebral and systemic organ microvascular pathologies coexist with human Alzheimer’s disease (AD) neuropathology. In this study, w...
-
Related Articles Developmental control of macrophage function. Curr Opin Immunol. 2017 Dec 13;50:64-74 Authors: Bonnardel J, Guillia...
-
Description A Caucasian boy aged 5 years presented with acute onset of a non-tender, palpable purpuric rash to his lower limbs, preceded by ...
-
Purpose. Sinonasal malignant mucosal melanoma is a rare, aggressive tumour. Nasal obstruction and epistaxis are the most commonly reported s...
-
Abstract Conquering immunosuppression in tumor microenvironments is crucial for effective cancer immunotherapy. It is well known that inte...
-
Abstract: Epidermolytic ichthyosis (EI) is a rare disorder of cornification caused by mutations in KRT1 and KRT10, encoding two suprabasal e...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου