Abstract
Astrocytes, a major type of glia, reciprocally influence synaptic transmission and connectivity, forming the “tripartite synapses”. Astrocytic metabotropic glutamate receptor (mGluR)-mediated Ca2+ waves and release of gliotransmitters or synaptogenic molecules mediate this neuron-glia interaction in the developing brain, but this signaling has been challenged for adult brain. However, cumulative evidence has suggested that mature astrocytes exhibit re-awakening of such immature phenotype in the pathological adult brain. This phenotypic change in astrocytes in response to injury may induce neural circuit and synapse plasticity. In this review article, we summarize astrocyte-mediated synapse remodeling during physiological development, discuss re-emergence of immature astrocytic signaling in adult pathological brain, and finally highlight its contribution to significant modification of synaptic connections correlating with functional progress of brain pathology.
1. Innocous and noxious circuits are independent. 2. In pathological condition, immature astrocytic mGluR5-mediated somatic and intercellular Ca2+ waves via IP3R2 re-appeared and induce synapse remodeling, leading to mechanical allodynia. 3. This re-awakened immature astrocytic signaling-mediated synapse remodeling would have both protective and harmful effects in the adult brain.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2qDCVcK
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου