Due to the low density and high temperature resistance, the SiCp/A356 composites have great potential for weight reduction and braking performance using the brake disc used in trains and automobiles. But the friction coefficient and braking performance are not stable in the braking process because of temperature rising. In this paper, friction and wear behaviors of SiCp/A356 composite against semimetallic materials were investigated in a ring-on-disc configuration in the temperature range of 30°C to 300°C. Experiments were conducted at a constant sliding speed of 1.4 m/s and an applied load of 200 N. Worn surface, subsurface, and wear debris were also examined by using SEM and EDS techniques. The third body films (TBFs) lubricated wear transferred to the third body abrasive wear above 200°C, which was a transition temperature. The friction coefficient decreased and weight of semimetallic materials increased with the increase of temperature and the temperature had almost no effect on the weight loss of composites. The dominant wear mechanism of the composites was microploughing and slight adhesion below 200°C, while being controlled by cutting grooves, severe adhesion, and delamination above the 200°C.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2rgeMsz
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Abstract Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthes...
-
Inhibition of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) signaling is highly effective in a subgroup of no...
-
Abstract Diphenylarsinic acid (DPAA) is an organic arsenic compound used for the synthesis of chemical weapons. We previously found that th...
-
Pugazhenthan Thangaraju, Sajitha Venkatesan, MK Showkath Ali Indian Journal of Community Medicine 2018 43(1):58-59 from #AlexandrosSfa...
-
IJMS, Vol. 18, Pages 1601: Updated Insight into the Physiological and Pathological Roles of the Retromer Complex International Journal of M...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου