Publication date: 30 August 2017
Source:Gene, Volume 626
Author(s): Johan S. Osorio, Massimo Bionaz
Gene reporter technology (GRT) has opened several new avenues for monitoring biological events including the activation of transcription factors, which are central to the study of nutrigenomics. However, this technology relies heavily on the insertion of foreign plasmid DNA into the nuclei of cells (i.e., transfection), which can be very challenging and highly variable among cell types. The objective of this study was to investigate the optimal conditions to generate reliable GRT assay data on bovine immortalized cell lines, Madin Darby Bovine Kidney (MDBK) and bovine mammary epithelial alveolar (MACT) cells. Results are reported for two experiments. In Experiment 1, using 96 well-plate and a robotic inverted fluorescent microscope, we compared transfection efficiency among commercially available transfection reagents (TR) Lipofectamine® 3000 (Lipo3), Lipofectamine® LTX (LipoLTX), and TransIT-X2® (TransX2), three doses of TR (i.e., 0.15, 0.3, and 0.4μL/well), and three doses of Green Fluorescent Protein plasmid DNA (i.e., 10, 25, and 50ng/well). Transfection efficiency and mortality rate were analyzed using CellProfiler software. Transfection efficiency increased until the end of the experiment (20h post-transfection) at which point MACT had greater transfection than MDBK cells (16.3% vs. 2.2%). It is unclear the reason for the low transfection in MDBK cells. Maximal transfection efficiency was obtained with 0.3μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 29.5±1.9%) and 0.15μL/well of LipoLTX plus 25ng/well of plasmid DNA (ca. 4.0±0.4%) for MACT and MDBK cells, respectively. The higher amount of TR and DNA was generally associated with higher cell mortality. Using high, medium, and low transfection efficiency conditions determined in Experiment 1, we performed a GRT assay for peroxisome proliferator-activated response element (PPRE) luciferase in MACT and MDBK cells treated with 10nM or 100nM of synthetic Peroxisome Proliferator-activated Receptor β/σ (PPARβ/σ) agonist. The GRT assay was unaffected by poor transfection in MACT cells although the high transfection hampered the possibility of detecting differences between 10 and 100nM of the PPARβ/δ agonist. In MDBK cells, low transfection efficiency (<2.0%) failed to detect any differences with GRT assay. The level of transfection was positively associated with a lower coefficient of variation of GRT data. Overall, our data indicates that results of GRT assays are affected by transfection efficiency and a minimum transfection of 2% is required. Thus, factors such as TR type, TR amount, and DNA plasmid amount need to be optimized for a specific cell type before performing GRT assays.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2rKYWTR
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Liver ischemia reperfusion injury (IRI) is inevitable during transplantation and resection and is characterized by hepatocellular injury. Th...
-
IJERPH, Vol. 15, Pages 162: Examining Public Perceptions about Lead in School Drinking Water: A Mixed-Methods Analysis of Twitter Response t...
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Radioterapia oncologica, la Cattolica protagonista al Congresso Europeo insalutenews ... l'utilizzo della radioterapia stereotass...
-
Abstract Background Individualized medication reviews may improve our understanding of the distribution of CYP2C19 polymorphisms in ethn...
-
Abstract Background and Objective Sonidegib is a potent, selective and orally bioavailable inhibitor of the Hedgehog signaling pathway, ...
-
Aim: This study was designed to evaluate the clinical characteristics and prognosis of elderly small cell lung cancer (SCLC) patients compli...
-
Abstract: We present a case of cutaneous apocrine carcinoma arising in the axilla of a 71-year-old man. The tumor had a significant componen...
-
Publication date: Available online 10 May 2017 Source: Journal of Dairy Science Author(s): N. Urrutia, K.J. Harvatine During biohydrogen...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου