In smart city applications, huge numbers of devices need to be connected in an autonomous manner. 3rd Generation Partnership Project (3GPP) specifies that Machine Type Communication (MTC) should be used to handle data transmission among a large number of devices. However, the data transmission rates are highly variable, and this brings about a congestion problem. To tackle this problem, the use of Access Class Barring (ACB) is recommended to restrict the number of access attempts allowed in data transmission by utilizing strategic parameters. In this paper, we model the problem of determining the strategic parameters with a reinforcement learning algorithm. In our model, the system evolves to minimize both the collision rate and the access delay. The experimental results show that our scheme improves system performance in terms of the access success rate, the failure rate, the collision rate, and the access delay.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2qEvRfs
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of t...
-
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take ca...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
-
Ambergris Caye's best News Source. A weekly tourism and community oriented newspaper providing local news, stories, and reports on what...
-
by Yanwei Li, Haifeng Liu, Wei Zeng, Jing Wei An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear p...
-
http://ift.tt/2p41efZ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου