Τετάρτη 26 Απριλίου 2017

Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry

Publication date: Available online 26 April 2017
Source:Experimental Cell Research
Author(s): Jennifer J. Wernegreen
Ancient associations between insects and bacteria provide models to study intimate host-microbe interactions. Currently, a wealth of genome sequence data for long-term, obligately intracellular (primary) endosymbionts of insects reveals profound genomic consequences of this specialized bacterial lifestyle. Those consequences include severe genome reduction and extreme base compositions. This minireview highlights the utility of genome sequence data to understand how, and why, endosymbionts have been pushed to such extremes, and to illuminate the functional consequences of such extensive genome change. While the static snapshots provided by individual endosymbiont genomes are valuable, comparative analyses of multiple genomes have shed light on evolutionary mechanisms. Namely, genome comparisons have told us that selection is important in fine-tuning gene content, but at the same time, mutational pressure and genetic drift contribute to genome degradation. Examples from Blochmannia, the primary endosymbiont of the ant tribe Camponotini, illustrate the value and constraints of genome sequence data, and exemplify how genomes can serve as a springboard for further comparative and experimental inquiry.



from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2oJ33x6
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις