Thermal-hydromechanical (THM) coupling process is a key issue in geotechnical engineering emphasized by many scholars. Most existing studies are conducted at macroscale or mesoscale. This paper presents a pore-scale THM coupling study of the immiscible two-phase flow in the perfect-plastic rock. Assembled rock matrix and pore space models are reconstructed using micro-CT image. The rock deformation and fluid flow are simulated using ANSYS and CFX software, respectively, in which process the coupled physical parameters will be exchanged by ANSYS multiphysics platform at the end of each iteration. Effects of stress and temperature on the rock porosity, permeability, microstructure, and the displacing mechanism of water flooding process are analyzed and revealed.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2ojucHp
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Abstract Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of t...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
-
Ambergris Caye's best News Source. A weekly tourism and community oriented newspaper providing local news, stories, and reports on what...
-
by Yanwei Li, Haifeng Liu, Wei Zeng, Jing Wei An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear p...
-
http://ift.tt/2p41efZ
-
Abstract In present work, the electronic structure and optical properties of the FeX 2 (X = S, Se, Te) compounds have been evaluated by t...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου