To deal with the disturbances of wave and current in the heading control of Autonomous Underwater Vehicles (AUVs), an optimal disturbances rejection control (ODRC) approach for AUVs in shallow water environment is designed to realize this application. Based on the quadratic optimal control theory, the AUVs heading control problem can be expressed as a coupled two-point boundary value (TPBV) problem. Using a recently developed successive approximation approach, the coupled TPBV problem is transformed into solving a decoupled linear state equation sequence and a linear adjoint equation sequence. By iteratively solving the two equation sequences, the approximate ODRC law is obtained. A Luenberger observer is constructed to estimate wave disturbances. Simulation is provided to demonstrate the effectiveness of the presented approach.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2ogycsz
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take ca...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
-
Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a f...
-
by Yanwei Li, Haifeng Liu, Wei Zeng, Jing Wei An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear p...
-
http://ift.tt/2p41efZ
-
-
Small size of metastatic lymph nodes with extracapsular spread greatly impacts treatment outcomes in oral squamous cell carcinoma patie...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου