Τετάρτη 29 Μαρτίου 2017

Empirical Driven Automatic Detection of Lobulation Imaging Signs in Lung CT

Computer-aided detection (CAD) of lobulation can help radiologists to diagnose/detect lung diseases easily and accurately. Compared to CAD of nodule and other lung lesions, CAD of lobulation remained an unexplored problem due to very complex and varying nature of lobulation. Thus, many state-of-the-art methods could not detect successfully. Hence, we revisited classical methods with the capability of extracting undulated characteristics and designed a sliding window based framework for lobulation detection in this paper. Under the designed framework, we investigated three categories of lobulation classification algorithms: template matching, feature based classifier, and bending energy. The resultant detection algorithms were evaluated through experiments on LISS database. The experimental results show that the algorithm based on combination of global context feature and BOF encoding has best overall performance, resulting in score of 0.1009. Furthermore, bending energy method is shown to be appropriate for reducing false positives. We performed bending energy method following the LIOP-LBP mixture feature, the average positive detection per image was reduced from 30 to 22, and score increased to 0.0643 from 0.0599. To the best of our knowledge this is the first kind of work for direct lobulation detection and first application of bending energy to any kind of lobulation work.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2ngbtv3
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις