Text clustering is an effective approach to collect and organize text documents into meaningful groups for mining valuable information on the Internet. However, there exist some issues to tackle such as feature extraction and data dimension reduction. To overcome these problems, we present a novel approach named deep-learning vocabulary network. The vocabulary network is constructed based on related-word set, which contains the “cooccurrence” relations of words or terms. We replace term frequency in feature vectors with the “importance” of words in terms of vocabulary network and PageRank, which can generate more precise feature vectors to represent the meaning of text clustering. Furthermore, sparse-group deep belief network is proposed to reduce the dimensionality of feature vectors, and we introduce coverage rate for similarity measure in Single-Pass clustering. To verify the effectiveness of our work, we compare the approach to the representative algorithms, and experimental results show that feature vectors in terms of deep-learning vocabulary network have better clustering performance.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2mqCaO3
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
A middle-aged poorly controlled diabetic man developed left-sided orbital and facial swelling several days after extraction of a left upper ...
-
Universal newborn hearing screening (UNHS) has become the standard of care in many countries. The aim of this study was to evaluate the resu...
-
The overall objective of the guideline is to provide up-to-date, evidence-based recommendations for the management of lichen sclerosus (LS)...
-
Abstract The head-mounted display (HMD) has the potential to improve the quality of ultrasound-guided procedures. The aim of this non-clin...
-
http://ift.tt/2pnwWaQ
-
Background. Globally 3 to 8% of reproductive age women are suffering from premenstrual dysphoric disorder (PMDD). Several mental and reprodu...
-
ACS Nano DOI: 10.1021/acsnano.7b01926 from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2pOw4te via...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου