Τρίτη 28 Φεβρουαρίου 2017

Reconstructed Phase Space-Based Damage Detection Using a Single Sensor for Beam-Like Structure Subjected to a Moving Mass

This paper presents a novel damage detection method based on the reconstructed phase space of vibration signals using a single sensor. In this approach, a moving mass is applied as excitation source, and the structure vibration responses at different positions are measured using a single sensor. A Moving Filter Function (MFF) is also presented to be used to separate and filter the responses before phase space reconstruction. Using the determined time delay and embedding dimensions, the responses are translated from time domain into the spatial domain. The index CPST (changes of phase space topology) values are calculated from the reconstructed phase space and used to identify structural damage. To demonstrate the method, six analysis scenarios for a beam-like structure considering the moving mass magnitude, damage location, the single sensor location, moving mass velocity, multiple types of damage, and the responses contaminated with noise are calculated. The acceleration and displacement responses are both used to identify the damage. The results indicate that the proposed method using displacement response is more sensitive to damage than that of acceleration responses. The results also proved that the proposed method can use a single sensor installed at different location of the beam to locate the damage/much damage reliably, even though the responses are contaminated with noise.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2moEQ2i
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις