Publication date: Available online 9 February 2017
Source:Free Radical Biology and Medicine
Author(s): Rostyslav R. Panchuk, Lilya V. Lehka, Alessio Terenzi, Bohdan P. Matselyukh, Jürgen Rohr, Amit K. Jha, Theresa Downey, Iryna J. Kril’, Irene Herbacek, Sushilla van Schonhoven, Petra Heffeter, Rostyslav S. Stoika, Walter Berger
Landomycin E (LE) is an angucycline antibiotic produced by Streptomyces globisporus. Previously, we have shown a broad anticancer activity of LE which is, in contrast to the structurally related and clinically used anthracycline doxorubicin (Dx), only mildly affected by multidrug resistance-mediated drug efflux. In the present study, cellular and molecular mechanisms underlying the anticancer activity of landomycin E towards Jurkat T-cell leukemia cells were dissected focusing on the involvement of radical oxygen species (ROS). LE-induced apoptosis distinctly differed in several aspects from the one induced by Dx. Rapid generation of both extracellular and cell-derived hydrogen peroxide already at one hour drug exposure was observed in case of LE but not found before 24h for Dx. In contrast, Dx but not LE induced production of superoxide radicals. Mitochondrial damage, as revealed by JC-1 staining, was weakly enhanced already at 3h LE treatment and increased significantly with time. Accordingly, activation of the intrinsic apoptosis pathway initiator caspase-9 was not detectable before 12h exposure. In contrast, cleavage of the down-stream caspase substrate PARP-1 was clearly induced already at the three hour time point. Out of all caspases tested, only activation of effector caspase-7 was induced at this early time points paralleling the LE-induced oxidative burst. Accordingly, this massive cleavage of caspase-7 at early time points was inhibitable by the radical scavenger N-acetylcysteine (NAC). Additionally, only simultaneous inhibition of multiple caspases reduced LE-induced apoptosis. Specific scavengers of both H2O2 and OH● effectively decreased LE-induced ROS production, but only partially inhibited LE-induced apoptosis. In contrast, NAC efficiently blocked both parameters. Summarizing, rapid H2O2 generation and a complex caspase activation pattern contribute to the antileukemic effects of LE. As superoxide generation is considered as the main cardiotoxic mechanism of Dx, LE might represent a better tolerable drug candidate for further (pre)clinical development.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2k8kXvO
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Point of view: Electrophysiological endpoints differ when comparing the mode of action of highly successful... Point of view: Electrophysiol...
-
Background Moyamoya angiopathy (MMA) is characterised by a progressive stenosis of the terminal part of the internal carotid arteries and th...
-
Related Articles Feasibility of Brain Atrophy Measurement in Clinical Routine without Prior Standardization of the MRI Protocol:...
-
Abstract The core mission of the Early Stage Professionals in Molecular Imaging Sciences (ESPMIS) Interest Group is to help young scientist...
-
Abstract Background A reported penicillin allergy may compromise receipt of recommended antibiotic prophylaxis intended to prevent surgica...
-
Objectives A major measure of treatment success for drug users undergoing rehabilitation is the ability to enter the workforce and generate ...
-
In view of the performance requirements (e.g., ride comfort, road holding, and suspension space limitation) for vehicle suspension systems, ...
-
Ravikiran N Pawar, Sambhunath Banerjee, Subhajit Bramha, Shekhar Krishnan, Arpita Bhattacharya, Vaskar Saha, Anupam Chakrapani, Saurabh Bhav...
-
Context. Despite improvement in pain management and availability of clinical treatment guidelines, patients in Jordan are still suffering fr...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου