Πέμπτη 9 Φεβρουαρίου 2017

Predictive modeling of respiratory tumor motion for real-time prediction of baseline shifts

Baseline shifts in respiratory patterns can result in significant spatiotemporal changes in patient anatomy (compared to that captured during simulation), in turn, causing geometric and dosimetric errors in the administration of thoracic and abdominal radiotherapy. We propose predictive modeling of the tumor motion trajectories for predicting a baseline shift ahead of its occurrence. The key idea is to use the features of the tumor motion trajectory over a 1 min window, and predict the occurrence of a baseline shift in the 5 s that immediately follow (lookahead window). In this study, we explored a preliminary trend-based analysis with multi-class annotations as well as a more focused binary classification analysis. In both analyses, a number of different inter-fraction and intra-fraction training strategies were studied, both offline as well as online, along with data sufficiency and skew compensation for class imbalances. The performance of different training strategies were c...

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2kKIqQL
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις