Κυριακή 12 Φεβρουαρίου 2017

Failure Characteristics of Joint Bolts in Shield Tunnels Subjected to Impact Loads from a Derailed Train

Impact loads generated by derailed trains can be extremely high, especially in the case of heavy trains running at high speeds, which usually cause significant safety issues to the rail infrastructures. In shield tunnels, such impact loads may not only cause the damage and deformation of concrete segments, but also lead to the failure of segmental joint bolts. This paper presents a numerical study on the failure behavior of segmental joint bolts in the shield tunnel under impact loading resulting from train derailments. A three-dimensional (3D) numerical model of a shield tunnel based on the finite element (FE) modelling strategy was established, in which the structural behavior of the segmental joint surfaces and the mechanical behavior of the segmental joint bolts were determined. The numerical results show that the occurrence of bolt failure starts at the joints near the impacted segment and develops along the travel direction of train. An extensive parametric study was subsequently performed and the influences of the bolt failure on the dynamic response of the segment were investigated. In particular, the proposed FE model and the analytical results will be used for optimizing the design method of the shield tunnel in preventing the failure of the joint bolts due to the impact load from a derailed HST.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2lzryQa
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις