Δευτέρα 30 Ιανουαρίου 2017

Phospholipase A 2 -activating protein is associated with a novel form of leukoencephalopathy

<span class="paragraphSection"><div class="boxTitle">Abstract</div>Leukoencephalopathies are a group of white matter disorders related to abnormal formation, maintenance, and turnover of myelin in the central nervous system. These disorders of the brain are categorized according to neuroradiological and pathophysiological criteria. Herein, we have identified a unique form of leukoencephalopathy in seven patients presenting at ages 2 to 4 months with progressive microcephaly, spastic quadriparesis, and global developmental delay. Clinical, metabolic, and imaging characterization of seven patients followed by homozygosity mapping and linkage analysis were performed. Next generation sequencing, bioinformatics, and segregation analyses followed, to determine a loss of function sequence variation in the phospholipase A<sub>2</sub>-activating protein encoding gene (<span style="font-style:italic;">PLAA</span>). Expression and functional studies of the encoded protein were performed and included measurement of prostaglandin E<sub>2</sub> and cytosolic phospholipase A<sub>2</sub> activity in membrane fractions of fibroblasts derived from patients and healthy controls. <span style="font-style:italic;">Plaa-</span>null mice were generated and prostaglandin E<sub>2</sub> levels were measured in different tissues. The novel phenotype of our patients segregated with a homozygous loss-of-function sequence variant, causing the substitution of leucine at position 752 to phenylalanine, in PLAA, which causes disruption of the protein’s ability to induce prostaglandin E<sub>2</sub> and cytosolic phospholipase A<sub>2</sub> synthesis in patients’ fibroblasts. <span style="font-style:italic;">Plaa-</span>null mice were perinatal lethal with reduced brain levels of prostaglandin E<sub>2</sub>. The non-functional phospholipase A<sub>2</sub>-activating protein and the associated neurological phenotype, reported herein for the first time, join other complex phospholipid defects that cause leukoencephalopathies in humans, emphasizing the importance of this axis in white matter development and maintenance.</span>

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jlUTN3
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις