<span class="paragraphSection"><div class="boxTitle">Abstract</div>Predicting treatment response for major depressive disorder can provide a tremendous benefit for our overstretched health care system by reducing number of treatments and time to remission, thereby decreasing morbidity. The present study used neural and performance predictors during a cognitive control task to predict treatment response (% change in Hamilton Depression Rating Scale pre- to post-treatment). Forty-nine individuals diagnosed with major depressive disorder were enrolled with intent to treat in the open-label study; 36 completed treatment, had useable data, and were included in most data analyses. Participants included in the data analysis sample received treatment with escitalopram (<span style="font-style:italic;">n</span> = 22) or duloxetine (<span style="font-style:italic;">n</span> = 14) for 10 weeks. Functional MRI and performance during a Parametric Go/No-go test were used to predict per cent reduction in Hamilton Depression Rating Scale scores after treatment. Haemodynamic response function-based contrasts and task-related independent components analysis (subset of sample: <span style="font-style:italic;">n</span> = 29) were predictors. Independent components analysis component beta weights and haemodynamic response function modelling activation during Commission errors in the rostral and dorsal anterior cingulate, mid-cingulate, dorsomedial prefrontal cortex, and lateral orbital frontal cortex predicted treatment response. In addition, more commission errors on the task predicted better treatment response. Together in a regression model, independent component analysis, haemodynamic response function-modelled, and performance measures predicted treatment response with 90% accuracy (compared to 74% accuracy with clinical features alone), with 84% accuracy in 5-fold, leave-one-out cross-validation. Convergence between performance markers and functional magnetic resonance imaging, including novel independent component analysis techniques, achieved high accuracy in prediction of treatment response for major depressive disorder. The strong link to a task paradigm provided by use of independent component analysis is a potential breakthrough that can inform ways in which prediction models can be integrated for use in clinical and experimental medicine studies.</span>
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2k8ojvr
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
http://orl-agios.blogspot.com/2017/06/the-preclinical-anticancer-effect-of.html Flavonoids present in foods were considered non-absorbable b...
-
Vol.31 No.5 from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1k8FKtW via IFTTT
-
Publication date: Available online 24 December 2017 Source: European Journal of Radiology Author(s): Wenbin Jiang, Hongwei Xue, Qinqin W...
-
Geographic region: Does it matter in cutaneous melanoma of the head and neck? Laryngoscope. 2017 Jun 05;: Authors: Kılıç S, Unsal AA,...
-
We report an unusual case of a strangulated internal hernia resulting from a right paraduodenal fossa hernia (PDH) in the context of bowel m...
-
Objective. We compared the effects of transcranial direct current stimulation at different cortical sites (premotor and motor primary cortex...
-
December from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1luSNqR via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου