Publication date: Available online 25 January 2017
Source:Experimental Cell Research
Author(s): Yuqin Deng, Yan Yan, Kai Sen Tan, Jing Liu, Vincent T Chow, Ze-Zhang Tao, De-Yun Wang
We have previously shown that human nasal epithelial cells (hNECs) are highly permissive cells for respiratory viruses including influenza A virus (IAV) and respiratory syncytial virus. Recent studies have indicated that microRNAs (miRNAs) are involved in virus-host relationship, and this led us to investigate its essential roles in the in vitro hNECs model derived from multiple donors. By comparing the differential expression of miRNAs upon IAV infection among animal and cell line studies, candidates were selected with focus on the initial immune response. After infection of influenza H3N2 virus, hNECs showed constant increase virus titer at 24 to 72h post-infection (hpi); accompanied with a significantly elevated level of miR-146a-5p at 72 hpi. The exponential elevation of progeny virus titer correlated with a key influenza sensing Toll-like receptor (TLR)7 pathway. TLR7 downstream gene transcripts, myeloid differentiation primary response gene 88 (MyD88), interferon regulator factor 7 (IRF7), and interferon-β (IFN-β) were significantly upregulated at 48 and 72 hpi, while interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor associated factor-6 (TRAF6) were unchanged. Interestingly, when miR-146a was overexpressed with miRNA mimics prior to H3N2 infection, further decreased transcripts of TRAF6, but not IRAK1, were detected. By using the in vitro hNEC model, we demonstrated that H3N2-induced miR-146a specifically targets and regulates TRAF6 expression; but not IRAK expression in the nasal epithelium. We also found that unlike the cell model studies that lead to our studies, when ran across a heterogeneous model of different individual, miRNA signals were highly varied and the expression of most miRNAs, including miR-146a-5p, was more subdued compared to homogenous cell line model, highlighting a need for a more thorough analysis of miRNA signals and targets in a model more mimicking a clinical influenza infection.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jVbNPE
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Coenzyme Q (CoQ) is a key component of the mitochondrial respiratory chain, but it also has several other functions in the cellular metaboli...
-
A new study published today in Genome Research models a first-of-its-kind approach to exploring the causes of cancer by combining cell and ...
-
Abstract Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthes...
-
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation...
-
Abstract Background Individualized medication reviews may improve our understanding of the distribution of CYP2C19 polymorphisms in ethn...
-
Objective. This meta-analysis aimed to compare the outcomes and postoperative complications between femtosecond laser-assisted cataract surg...
-
Publication date: January 2018 Source: International Journal of Biological Macromolecules, Volume 106 from #AlexandrosSfakianakis via...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου