Publication date: Available online 7 January 2017
Source:Journal of Biomechanics
Author(s): Claudio Belvedere, Sorin Siegler, Andrea Ensini, Jason Toy, Paolo Caravaggi, Ramya Namani, Giulia Giannini, Stefano Durante, Alberto Leardini
The mechanical characteristics of the ankle such as its kinematics and load transfer properties are influenced by the geometry of the articulating surfaces. A recent, image-based study found that these surfaces can be approximated by a saddle-shaped, skewed, truncated cone with its apex oriented laterally. The goal of this study was to establish a reliable experimental technique to study the relationship between the geometry of the articular surfaces of the ankle and its mobility and stability characteristics and to use this technique to determine if morphological approximations of the ankle surfaces based on recent discoveries, produce close to normal behavior. The study was performed on ten cadavers. For each specimen, a process based on medical imaging, modelling and 3D printing was used to produce two subject specific artificial implantable sets of the ankle surfaces. One set was a replica of the natural surfaces. The second approximated the ankle surfaces as an original saddle-shaped truncated cone with apex oriented laterally. Testing under cyclic loading conditions was then performed on each specimen following a previously established technique to determine its mobility and stability characteristics under three different conditions: natural surfaces; artificial surfaces replicating the natural surface morphology; and artificial approximation based on the saddle-shaped truncated cone concept. A repeated measure analysis of variance was then used to compare between the three conditions. The results show that 1: the artificial surfaces replicating natural morphology produce close to natural mobility and stability behavior thus establishing the reliability of the technique; and 2. the approximated surfaces based on saddle-shaped truncated cone concept produce mobility and stability behavior close to the ankle with natural surfaces.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jeQuH8
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
This case report outlines the possibility of accelerated tooth movement with the combination of microosteoperforation and mini-screws. A 14-...
-
by Rebekah L. Rogers, Ling Shao, Kevin R. Thornton One common hypothesis to explain the impacts of tandem duplications is that whole gene ...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2juls25 via IFTTT
-
by Qi Quan, Lei Hong, Biao Chang, Ruoxi Liu, Yun Zhu, Jiang Peng, Qing Zhao, Shibi Lu Purpose The purpose of this study was to simulate and...
-
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated ca...
-
by Mark A. Valasek, Irene Thung, Esha Gollapalle, Alexey A. Hodkoff, Kaitlyn J. Kelly, Joel M. Baumgartner, Vera Vavinskaya, Grace Y. Lin, A...
-
The secondary channel (SC) of multisubunit RNA polymerases (RNAPs) allows access to the active site and is a nexus for the regulation of tra...
-
by Hellen Houlleberghs, Anne Goverde, Jarnick Lusseveld, Marleen Dekker, Marco J. Bruno, Fred H. Menko, Arjen R. Mensenkamp, Manon C. W. Sp...
-
A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor British Journal of Canc...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου