The performance of quantum dot-sensitized solar cell (QDSSC) is mainly limited by chemical reactions at the interface of the counter electrode. Generally, the fill factor (FF) of QDSSCs is very low because of large charge transfer resistance at the interface between the counter electrode and electrolyte solution containing redox couples. In the present research, we demonstrate the improvement of the resistance by optimization of surface area and amount of catalyst of the counter electrode. A facile chemical synthesis was used to fabricate a composite counter electrode consisting of fluorine-doped tin oxide (FTO) powder and CuS nanoparticles. The introduction of a sputtered gold layer at the interface of the porous-FTO layer and underlying glass substrate also markedly reduced the resistance of the counter electrode. As a result, we could reduce the charge transfer resistance and the series resistance, which were 2.5 [Ω] and 6.0 [Ω], respectively. This solar cell device, which was fabricated with the presently designed porous-FTO counter electrode as the cathode and a PbS-modified electrode as the photoanode, exhibited a FF of 58%, which is the highest among PbS-based QDSSCs reported to date.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2jAOkCC
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
Abstract Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthes...
-
Inhibition of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) signaling is highly effective in a subgroup of no...
-
Abstract Diphenylarsinic acid (DPAA) is an organic arsenic compound used for the synthesis of chemical weapons. We previously found that th...
-
Pugazhenthan Thangaraju, Sajitha Venkatesan, MK Showkath Ali Indian Journal of Community Medicine 2018 43(1):58-59 from #AlexandrosSfa...
-
IJMS, Vol. 18, Pages 1601: Updated Insight into the Physiological and Pathological Roles of the Retromer Complex International Journal of M...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου