Σάββατο 10 Μαρτίου 2018

Fast and Robust Unsupervised Identification of MS Lesion Change Using the Statistical Detection of Changes Algorithm.

Fast and Robust Unsupervised Identification of MS Lesion Change Using the Statistical Detection of Changes Algorithm.

AJNR Am J Neuroradiol. 2018 Mar 08;:

Authors: Nguyen TD, Zhang S, Gupta A, Zhao Y, Gauthier SA, Wang Y

Abstract
We developed a robust automated algorithm called statistical detection of changes for detecting morphologic changes of multiple sclerosis lesions between 2 T2-weighted FLAIR brain images. Results from 30 patients showed that statistical detection of changes achieved significantly higher sensitivity and specificity (0.964, 95% CI, 0.823-0.994; 0.691, 95% CI, 0.612-0.761) than with the lesion-prediction algorithm (0.614, 95% CI, 0.410-0.784; 0.281, 95% CI, 0.228-0.314), while resulting in a 49% reduction in human review time (P = .007).

PMID: 29519791 [PubMed - as supplied by publisher]



from Imaging via alkiviadis.1961 on Inoreader http://ift.tt/2GavWwd

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις