Κυριακή 18 Φεβρουαρίου 2018

A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy.

Related Articles

A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy.

Sci Rep. 2018 Feb 16;8(1):3171

Authors: Pradhan S, Smith AM, Garson CJ, Hassani I, Seeto WJ, Pant K, Arnold RD, Prabhakarpandian B, Lipke EA

Abstract
Assessment of anti-cancer drug efficacy in in vitro three-dimensional (3D) bioengineered cancer models provides important contextual and relevant information towards pre-clinical translation of potential drug candidates. However, currently established models fail to sufficiently recapitulate complex tumor heterogeneity. Here we present a chip-based tumor-mimetic platform incorporating a 3D in vitro breast cancer model with a tumor-mimetic microvascular network, replicating the pathophysiological architecture of native vascularized breast tumors. The microfluidic platform facilitated formation of mature, lumenized and flow-aligned endothelium under physiological flow recapitulating both high and low perfused tumor regions. Metastatic and non-metastatic breast cancer cells were maintained in long-term 3D co-culture with stromal fibroblasts in a poly(ethylene glycol)-fibrinogen hydrogel matrix within adjoining tissue chambers. The interstitial space between the chambers and endothelium contained pores to mimic the "leaky" vasculature found in vivo and facilitate cancer cell-endothelial cell communication. Microvascular pattern-dependent flow variations induced concentration gradients within the 3D tumor mass, leading to morphological tumor heterogeneity. Anti-cancer drugs displayed cell type- and flow pattern-dependent effects on cancer cell viability, viable tumor area and associated endothelial cytotoxicity. Overall, the developed microfluidic tumor-mimetic platform facilitates investigation of cancer-stromal-endothelial interactions and highlights the role of a fluidic, tumor-mimetic vascular network on anti-cancer drug delivery and efficacy for improved translation towards pre-clinical studies.

PMID: 29453454 [PubMed - in process]



from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2sxxhKk
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις