Abstract
Tryptophan dimers (TDs) are an important class of natural products with diverse bioactivities and share conserved biosynthetic pathways. We report the identification of a partial gene cluster (spm) responsible for the biosynthesis of a class of unusual TDs with non-planar skeletons including spiroindimicins (SPMs), indimicins (IDMs), and lynamicins (LNMs) from the deep-sea derived Streptomyces sp. SCSIO 03032. Bioinformatics analysis, targeted gene disruptions, and heterologous expression studies confirmed the involvement of the spm gene cluster in the biosynthesis of SPM/IDM/LNMs, and revealed the indispensable roles for the halogenase/reductase pair SpmHF, the amino acid oxidase SpmO, and the chromopyrrolic acid (CPA) synthase SpmD, as well as the positive regulator SpmR and the putative transporter SpmA. However, the spm gene cluster was unable to confer a heterologous host the ability to produce SPM/IDM/LNMs. In addition, the P450 enzyme SpmP and the monooxygenase SpmX2 were found to be non-relevant to the biosynthesis of SPM/IDM/LNMs. Sequence alignment and structure modeling suggested the lack of key conserved amino acid residues in the substrate-binding pocket of SpmP. Furthermore, feeding experiments in the non-producing ΔspmO mutant revealed several biosynthetic precursors en route to SPMs, indicating that key enzymes responsible for the biosynthesis of SPMs should be encoded by genes outside of the identified spm gene cluster. Finally, the biosynthetic pathways of SPM/IDM/LNMs are proposed to lay a basis for further insights into their intriguing biosynthetic machinery.
http://ift.tt/2ssdsm0
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου