Abstract
Purpose
This article examines feature-based nodule description for the purpose of nodule classification in chest computed tomography scanning.
Methods
Three features based on (i) Gabor filter, (ii) multi-resolution local binary pattern (LBP) texture features and (iii) signed distance fused with LBP which generates a combinational shape and texture feature are utilized to provide feature descriptors of malignant and benign nodules and non-nodule regions of interest. Support vector machines (SVMs) and k-nearest neighbor (kNN) classifiers in serial and two-tier cascade frameworks are optimized and analyzed for optimal classification results of nodules.
Results
A total of 1191 nodule and non-nodule samples from the Lung Image Data Consortium database is used for analysis. Classification using SVM and kNN classifiers is examined. The classification results from the two-tier cascade SVM using Gabor features showed overall better results for identifying non-nodules, malignant and benign nodules with average area under the receiver operating characteristics (AUC-ROC) curves of 0.99 and average f1-score of 0.975 over the two tiers.
Conclusion
In the results, higher overall AUCs and f1-scores were obtained for the non-nodules cases using any of the three features, showing the greatest distinguishability over nodules (benign/malignant). SVM and kNN classifiers were used for benign, malignant and non-nodule classification, where Gabor proved to be the most effective of the features for classification. The cascaded framework showed the greatest distinguishability between benign and malignant nodules.
http://ift.tt/2swIv00
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου