Abstract
During primate evolution, the neuronal and cognition-related genes have evolved rapidly. These genes seem to induce neurological illnesses such as Alzheimer's disease (AD). In this study, we analyzed genes APOE, TOMM40, and PICALM known as the risk factors of AD. We performed bioinformatics analyses in relation to evolution, phylogeny, and protein structure for those genes in humans, Neanderthals, chimpanzees, bonobos, gorillas, orangutans, crab-eating monkeys, and rhesus monkeys. Cholesterol-related genes showed relatively rapid evolution toward a lower risk of AD. Neanderthals showed relatively higher polymorphism in genes APOE, TOMM40, and PICALM than humans did. Phylogeny indicated different topologies in the trichotomy of humans, chimpanzees, and gorillas in terms of genes APOE, TOMM40, and PICALM. These results provide to hominin-specific patterns in three genes, and give clues to the modern human-specific traits of AD and shed light on further functional research helping to understand AD.
http://ift.tt/2rNTA9V
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου