Abstract
Purpose
A key component of computer- assisted surgery systems is the accurate and robust registration of preoperative planning data with intraoperative sensor data. In laparoscopic surgery, this image-based registration remains challenging due to soft tissue deformations. This paper presents a novel approach for biomechanical soft tissue registration of preoperative CT data with stereo endoscopic image data.
Methods
The proposed method consists of two registrations steps. First, we use a 3D surface mosaic from partial surfaces reconstructed from stereo endoscopic images to initially align the biomechanical model with the intraoperative position and shape of the organ. After this initialization, the biomechanical model is projected onto newly captured surfaces, resulting in displacement boundary conditions, which in turn are used to update the biomechanical model.
Results
The method is evaluated in silico, using a human liver model, and in vivo, using porcine data. The quantitative in silico data shows a stable behaviour of the biomechanical model and root-mean-square deviation of volume vertices of under 3 mm with adjusted biomechanical parameters.
Conclusion
This work contributes a fully automatic featureless non-rigid registration approach. The results of the in silico and in vivo experiments suggest that our method is able to handle dynamic deformations during surgery. Additional experiments, especially regarding human tissue behaviour, are an important next step towards clinical applications.
http://ift.tt/2rZlikm
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου