Abstract
Background
The purpose of this study was to examine biomechanical properties and the degree of radiolucency of two cemented basic glenoid designs for total shoulder arthroplasty. Our hypothesis was that a component with increased micro-motion in the laboratory at time zero would also exhibit a greater amount of radiolucency in patients at a minimum of 2 years post total shoulder arthroplasty.
Methods
Thirty cadaveric shoulders were divided into 2 groups (keel vs. peg). The glenoid components were first loaded with a single axial eccentric force of 196 N in all orientations and then with a transversal load of 49 N to simulate in vivo loads with abduction. Displacement of the glenoid component was determined with four different linear variable-differential transducers. In the second phase, 56 antero-posterior x-rays of 52 patients with either the same keeled (n = 24) or pegged (n = 32) glenoid component with a minimum of 24 months follow-up were evaluated for radiolucency.
Results
Biomechanically the pegged glenoid showed a significant increase in micro-motion during eccentric axial loading as well as during combined loading in the anterior, posterior, and inferior position as compared to the keeled glenoid (p < 0.05). In contrast all results were significant with greater radiolucency for the keeled glenoid component (p = 0.001).
Conclusion
While the pegged component exhibited a greater amount of micro-motion during biomechanical testing, radiolucency was greater in patients with a keeled component. These findings provide support for both components from different perspectives and highlight the need for well-constructed studies to determine whether glenoid design has an effect on clinical outcome, because influences are multifactorial and biomechanical forces may not recreate forces seen in vivo.
http://ift.tt/2rlUgGY
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου