Τετάρτη 17 Μαΐου 2017

DNA damage-induced Degradation of EXO1 Limits DNA End Resection to Ensure Accurate DNA Repair [Molecular Bases of Disease]

End resection of DNA double-strand breaks (DSBs) to generate 3′-single-stranded DNA facilitates DSB repair via error-free homologous recombination (HR) while stymieing repair by the error-prone non-homologous end joining (NHEJ) pathway. Activation of DNA end resection involves phosphorylation of the 5′ to 3′ exonuclease EXO1 by the phosphoinositide 3-kinase-like kinases ATM and ATR, and by the cyclin-dependent kinases 1 and 2. After activation, EXO1 must also be restrained in order to prevent over-resection which is known to hamper optimal HR and trigger global genomic instability. However, mechanisms by which EXO1 is restrained are still unclear. Here, we report that EXO1 is rapidly degraded by the ubiquitin-proteasome system soon after DSB induction in human cells. ATR inhibition attenuated DNA damage-induced EXO1 degradation, indicating that ATR-mediated phosphorylation of EXO1 targets it for degradation. In accord with these results, EXO1 became resistant to degradation when its SQ motifs required for ATR-mediated phosphorylation were mutated. We show that upon DNA damage, EXO1 is ubiquitinated by a member of the Skp1-Cullin1-F-box (SCF) family of ubiquitin ligases in a phosphorylation-dependent manner. Importantly, expression of degradation-resistant EXO1 resulted in hyper-resection which attenuated both NHEJ and HR, and severely compromised DSB repair resulting in chromosomal instability. These findings indicate that the coupling of EXO1 activation with its eventual degradation is a timing mechanism that limits the extent of DNA end resection for accurate DNA repair.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2qtzp2E
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις