Παρασκευή 21 Απριλίου 2017

The composition and biomechanical properties of human cryopreserved aortas, pulmonary trunks, and aortic and pulmonary cusps

S09409602.gif

Publication date: Available online 21 April 2017
Source:Annals of Anatomy - Anatomischer Anzeiger
Author(s): Tereza Kubíková, Petra Kochová, Jan Brázdil, Jaroslav Špatenka, Jan Burkert, Milena Králíčková, Zbyněk Tonar
Human cryopreserved allografts of pulmonary and aortic heart valves, aortas and pulmonary trunks are used for valve replacement. However, it is unknown how the composition of these allografts relate to their mechanical properties. Our aims were to correlate the histological compositions and passive mechanical properties of aortic and pulmonary valves and to observe the microcracks of aortas and pulmonary trunks. The following parameters were quantified: ultimate stress; ultimate strain; Young's modulus of elasticity; valve cusp wall thickness; pulmonary and aortic intima-media thickness; area fraction of elastin, collagen and calcification; and length density of elastic fibres. The propagation of experimentally induced microcracks avoided elastic fibres. Ultimate strain was negatively correlated with the area fraction of calcification (r=−0.4) in aortas. Ultimate stress (r=0.27) and Young’s modulus in small deformation (r=0.29) and in large deformation (r=0.32) correlated with wall thickness in valve cusps. Young’s modulus (r=0.34) and ultimate strain (r=0.31) correlated with intima-media thickness. Ultimate strain correlated with the area fraction of elastin (r=−0.40) and collagen in the arteries (r=0.31). As conventional histology does not fully explain the mechanical properties of cryopreserved grafts, both morphological and biomechanical tests should be used complementarily when characterizing the ageing of the grafts.



from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2pYRKls
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις