Abstract
Reverse genetic systems (RGS) have been widely used for fixed rabies virus (RABV) strains. However, RGS, for wild-type (wt) strains, have been seldom reported despite the value of this approach in defining the biological characteristics of these strains. In this work, we developed a wt RGS using a swine-origin RABV strain (GD-SH-01) for the first time. In order to have a better understanding of the contribution and function of individual gene on viral proliferation for wt RABV isolates, we constructed a full-length cDNA clone of GD-SH-01 and exchanged the single genes encoding RABV protein of a highly attenuated RABV strain HEP-Flury with those of the virulent strain. Analysis of the viral growth kinetics, cell-to-cell spread, and genomic RNA (gRNA) synthesis of the both the rescued and parental virus strains revealed that replacement of the HEP-Flury N or L genes with those from GD-SH-01 resulted in higher proliferative capacity of both chimeric rHEP-shN and rHEP-shL while the former seemed to have a better viral gRNA synthesis ability, the latter spread faster. Replacement of HEP-Flury P gene with GD-SH-01 P gene resulted in reduction of the virus titer in cell culture supernatants with a poor replicative and spreading ability. However, replacement of HEP-Flury M or G genes with those from GD-SH-01 seemed to impact less on viral proliferation. Taken together, we show that we have successfully rescued a wt RABV strain, and assessed the impact of each gene on viral proliferative capacity using a series of single-gene-substituted viruses.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2q7YeC1
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου