Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA–protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and...
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2oWxn7W
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
This case report outlines the possibility of accelerated tooth movement with the combination of microosteoperforation and mini-screws. A 14-...
-
by Sofie V. Nielsen, Amelie Stein, Alexander B. Dinitzen, Elena Papaleo, Michael H. Tatham, Esben G. Poulsen, Maher M. Kassem, Lene J. Rasm...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2juls25 via IFTTT
-
The secondary channel (SC) of multisubunit RNA polymerases (RNAPs) allows access to the active site and is a nexus for the regulation of tra...
-
A phase 1 dose-escalation and expansion study of binimetinib (MEK162), a potent and selective oral MEK1/2 inhibitor British Journal of Canc...
-
Long-term clinical outcomes and economic evaluation of the ketogenic diet versus care as usual in children and adolescents with intract...
-
Viruses, Vol. 10, Pages 107: Recombinant Goose Circoviruses Circulating in Domesticated and Wild Geese in Poland Viruses doi: 10.3390/v1003...
-
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2qoeMDm via IFTTT
-
A critical step in cellular-trafficking pathways is the budding of membranes by protein coats, which recent experiments have demonstrated ca...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου