The mechanical properties of the matrix and the fiber/matrix interface have a relevant influence over the mechanical properties of a composite. In this work, a glass fiber-reinforced composite is manufactured using a carbon nanotubes (CNTs) doped epoxy matrix. The influence of the CNTs on the material mechanical behavior is evaluated on the resin, on the fiber/matrix interface, and on the composite. On resin, the incorporation of CNTs increased the hardness by 6% and decreased the fracture toughness by 17%. On the fiber/matrix interface, the interfacial shear strength (IFSS) increased by 22% for the nanoengineered composite (nFRC). The influence of the CNTs on the composite behavior was evaluated by through-thickness compression, short beam flexural, and intraply fracture tests. The compressive strength increased by 6% for the nFRC, attributed to the rise of the matrix hardness and the fiber/matrix IFSS. In contrast, the interlaminar shear strength (ILSS) obtained from the short beam tests was reduced by 8% for the nFRC; this is attributed to the detriment of the matrix fracture toughness. The intraply fracture test showed no significant influence of the CNTs on the fracture energy; however, the failure mode changed from brittle to ductile in the presence of the CNTs.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2piOinZ
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Background Hyperthyroidism is associated with increased thrombotic risk. As contact system activation through formation of neutrophil extrac...
-
CBN News Cancer Took Most of His Tongue, but This Pastor Is Still Singing ... CBN News A youth pastor in San Diego, California is not ...
-
Abstract Ocean acidification increases the amount of dissolved inorganic carbon (DIC) available in seawater which can benefit photosynthes...
-
Inhibition of epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) signaling is highly effective in a subgroup of no...
-
Abstract Diphenylarsinic acid (DPAA) is an organic arsenic compound used for the synthesis of chemical weapons. We previously found that th...
-
Pugazhenthan Thangaraju, Sajitha Venkatesan, MK Showkath Ali Indian Journal of Community Medicine 2018 43(1):58-59 from #AlexandrosSfa...
-
IJMS, Vol. 18, Pages 1601: Updated Insight into the Physiological and Pathological Roles of the Retromer Complex International Journal of M...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου