This paper reports on the optimization of flexible PDMS-based normal pressure capacitive microsensors dedicated to wearable applications. The operating principle and the fabrication process of such microsensors are presented. Then, the deformations under local pressure of PDMS thin films of thicknesses ranging from 100 μm to 10 mm are studied by means of numerical simulations in order to foresee the sensitivity of the considered microsensors. The study points out that, for a given PDMS type, the sensor form ratio plays a major role in its sensitivity. Indeed, for a given PDMS film, the expected capacitance change under a 10 N load applied on a 1.7 mm radius electrode varies from a few percent to almost 40% according to the initial PDMS film thickness. These observations are validated by experimental characterizations carried out on PDMS film samples of various thicknesses (10 μm to 10 mm) and on actual microsensors. Further computations enable generalized sensor design rules to be highlighted. Considering practical limitations in the fabrication and in the implementation of the actual microsensors, design rules based on computed form ratio optimization lead to the elaboration of flexible pressure microsensors exhibiting a sensitivity which reaches up to .
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2nDwF33
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take ca...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
-
by Yanwei Li, Haifeng Liu, Wei Zeng, Jing Wei An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear p...
-
http://ift.tt/2p41efZ
-
Abstract Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of t...
-
Abstract In present work, the electronic structure and optical properties of the FeX 2 (X = S, Se, Te) compounds have been evaluated by t...
-
by Rocio Acuna-Hidalgo, Pelagia Deriziotis, Marloes Steehouwer, Christian Gilissen, Sarah A. Graham, Sipko van Dam, Julie Hoover-Fong, Aida...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου