Publication date: May 2017
Source:Journal of Dairy Science, Volume 100, Issue 5
Author(s): G. Klop, J. Dijkstra, K. Dieho, W.H. Hendriks, A. Bannink
Rumen microbes can adapt to feed additives, which may make the decrease in enteric CH4 production upon feeding an additive a transient response only. This study investigated alternate feeding of 2 CH4 mitigating feed additives with a different mode of action on persistency of lowering CH4 production compared with feeding a single additive over a period of 10 wk. Four pairs of cows were selected, and within pairs, cows were randomly assigned to either the control (AR-AR) or the alternating (AR-LA) concentrate treatment. The AR concentrate contained a blend of essential oils (Agolin Ruminant, Agolin SA, Bière, Switzerland; 0.17 g/kg of dry matter) and the LA concentrate contained lauric acid (C12:0; 65 g/kg of dry matter). A basal concentrate without Agolin Ruminant and lauric acid was fed during the pretreatment period (2 wk). Thereafter, the cows assigned to the AR-AR treatment received the AR concentrate during all 10 treatment weeks (5 periods of 2 wk each), whereas cows assigned to the AR-LA treatment received AR and LA concentrates rotated on a weekly basis. Methane emission was measured in climate respiration chambers during periods 1, 3, and 5. From period 3 onward, dry matter intake and milk protein concentration were reduced with the AR-LA treatment. Milk fat concentration was not affected, but the proportion of C12:0 in milk fat increased upon feeding C12:0. Molar proportions of acetate and propionate in rumen fluid were lower and higher, respectively, with the AR-LA than with the AR-AR treatment. Methane yield (g/kg of dry matter intake) and intensity (g/kg of fat- and protein-corrected milk yield) were not affected by treatment. Methane yield and intensity were significantly lower (12 and 11%, respectively) in period 1 compared with the pretreatment period, but no significant difference relative to pretreatment period was observed in period 3 (numerically 9 and 7% lower, respectively) and in period 5 (numerically 8 and 4% lower, respectively). Results indicate a transient decrease in CH4 yield and intensity in time, but no improvement in extent or persistency of the decline in CH4 due to rotational feeding of essential oils and C12:0 in lactating dairy cows.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2o8pgEh
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objective Outpatient parenteral antimicrobial therapy (OPAT) provides opportunities for improved cost savings, but in the UK, implementation...
-
Caring for Patients with Physical Disabilities: Assessment of an Innovative Spinal Cord Injury Session that Addresses an Educational Gap Des...
-
Geriatric trauma: A population-based study Saint Shiou-Sheng Chen, Li-Chien Chien Formosan Journal of Surgery 2019 52(2):39-44 Background: G...
-
Ocular Vestibular Evoked Myogenic Potentials: Where Are We Now? Objective: Over the last decade, ocular vestibular evoked myogenic potential...
-
Abstract Objective To study the effects of Astragalus polysaccharide (APS), the primary effective component of the Chinese herb medicine A...
-
http://orl-agios.blogspot.com/2017/06/the-preclinical-anticancer-effect-of.html Flavonoids present in foods were considered non-absorbable b...
-
Abstract Objective To evaluate Chinese medicine (CM) formula Bazheng Powder (八正散) as an alternative therapeutic option for female patients...
-
World Community; and Remarks on our Own Behalf Models of Anticipation Within the Responsible Research and Innovation Framework: the Two RRI ...
-
Abstract Eslicarbazepine acetate is a new anti-epileptic drug belonging to the dibenzazepine carboxamide family that is currently approved ...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου