Σάββατο 15 Απριλίου 2017

Biodegradable poly(lactic acid)-based scaffolds: synthesis and biomedical applications

Abstract

Biodegradable polymers are identified as substantial materials for biomedical applications. These polymers have the ability to deteriorate through an unpretentious hydrolysis and eliminated through kidneys' functions or metabolic processes. Among widely used biodegradable polymers in biomedical applications, poly(lactic acid) (PLA) is becoming one of the most paramount polymers. Synthesizing PLA through melt/solution polycondensation polymerizations makes it relatively easy to tailor properties of final product. However, their synthesis reactions are affected by several parameters such as polymerization time, temperature, pressure, catalysts, and the polarity of the solvent. Moreover, equilibrium reactions are controlled through utilizing a hydrophilic monomer such as ethylene glycol (EG). These factors can strongly impact final properties of PLA. Thus, it is indispensable to comprehend the effect of operating parameters during the polymerization process. Optimizing synthesis conditions can be accomplished through reducing side reactions. Furthermore, this can be achieved through racemization by utilizing chain extenders to build high molecular weight and enhance thermal stability. In this review, the design and fabrication of porous PLA scaffolds and their physicomechanical behavior are reviewed. Different PLA scaffold parameters were investigated thoroughly, which include biocompatibility, biodegradability, and mechanical properties for different porosity and pore sizes to mimic the complex architecture of the natural tissue regeneration.

Graphical Abstract



http://ift.tt/2oe0xzf

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις