Τρίτη 4 Απριλίου 2017

Accurate step-hold tracking of smoothly varying periodic and aperiodic probability

Abstract

Subjects observing many samples from a Bernoulli distribution are able to perceive an estimate of the generating parameter. A question of fundamental importance is how the current percept—what we think the probability now is—depends on the sequence of observed samples. Answers to this question are strongly constrained by the manner in which the current percept changes in response to changes in the hidden parameter. Subjects do not update their percept trial-by-trial when the hidden probability undergoes unpredictable and unsignaled step changes; instead, they update it only intermittently in a step-hold pattern. It could be that the step-hold pattern is not essential to the perception of probability and is only an artifact of step changes in the hidden parameter. However, we now report that the step-hold pattern obtains even when the parameter varies slowly and smoothly. It obtains even when the smooth variation is periodic (sinusoidal) and perceived as such. We elaborate on a previously published theory that accounts for: (i) the quantitative properties of the step-hold update pattern; (ii) subjects' quick and accurate reporting of changes; (iii) subjects' second thoughts about previously reported changes; (iv) subjects' detection of higher-order structure in patterns of change. We also call attention to the challenges these results pose for trial-by-trial updating theories.



http://ift.tt/2ozsdSC

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις