by Eva Rico, Alasdair Ivens, Lucy Glover, David Horn, Keith R. Matthews
Trypanosoma brucei, causing African sleeping-sickness, exploits quorum-sensing (QS) to generate the ‘stumpy forms’ necessary for the parasite’s transmission to tsetse-flies. These quiescent cells are generated by differentiation in the bloodstream from proliferative slender forms. Using genome-wide RNAi selection we screened for repressors of transmission stage-enriched mRNAs in slender forms, using the stumpy-elevated ESAG9 transcript as a model. This identified REG9.1, whose RNAi-silencing alleviated ESAG9 repression in slender forms and tsetse-midgut procyclic forms. Interestingly, trypanosome surface protein Family 5 and Family 7 mRNAs were also elevated, which, like ESAG9, are T. brucei specific and stumpy-enriched. We suggest these contribute to the distinct transmission biology and vector tropism of T. brucei from other African trypanosome species. As well as surface family regulation, REG9.1-depletion generated QS-independent development to stumpy forms in vivo, whereas REG9.1 overexpression in bloodstream forms potentiated spontaneous differentiation to procyclic forms in the absence of an external signal. Combined, this identifies REG9.1 as a regulator of developmental cell fate, controlling the expression of Trypanosoma brucei-specific molecules elevated during transmission.from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2nW1Tz6
via IFTTT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου