The attitude control and depth tracking issue of autonomous underwater vehicle (AUV) are addressed in this paper. By introducing a nonsingular coordinate transformation, a novel nonlinear reduced-order observer (NROO) is presented to achieve an accurate estimation of AUV’s state variables. A discrete-time model predictive control with nonlinear model online linearization (MPC-NMOL) is applied to enhance the attitude control and depth tracking performance of AUV considering the wave disturbance near surface. In AUV longitudinal control simulation, the comparisons have been presented between NROO and full-order observer (FOO) and also between MPC-NMOL and traditional NMPC. Simulation results show the effectiveness of the proposed method.
from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/2hL6UGg
via IFTTT
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Δημοφιλείς αναρτήσεις
-
Objectives To optimise medical students’ early clerkship is a complex task since it is conducted in a context primarily organised to take ca...
-
Abstract Purpose Overcoming the flaws of current data management conditions in head and neck oncology could enable integrated informatio...
-
1 abqls-210rm.html Read the latest Journal of Clinical Neurophysiology - Vol. 37, No. 1, January 2020.eml 2 agx3v-nxz96.html Read the late...
-
Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a f...
-
by Yanwei Li, Haifeng Liu, Wei Zeng, Jing Wei An increase in the osmolarity of tears induced by excessive evaporation of the aqueous tear p...
-
http://ift.tt/2p41efZ
-
-
Abstract Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of t...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου