Δευτέρα 30 Μαΐου 2016

Improved TV Algorithm Based on Adaptive Multiplier for Interference Hyperspectral Image Decomposition

Interference Hyperspectral Images (IHI) data acquired by Interference Hyperspectral Imaging Spectrometer exhibit many vertical interference stripes. The above characteristics will affect the application of dictionary learning and compressed sensing theory used on IHI data. According to the special characteristics of IHI data, many algorithms are proposed to separate the interference stripes layers and the background layers of IHI data in 2015, but the interference stripes layers are still not clean enough and the ideal background layers without interference stripes are also difficult to be obtained. In this paper, an improved total variation (TV) algorithm based on adaptive multiplier is proposed for IHI data decomposition. The value of the Lagrange multiplier is adaptive according to the unidirectional characteristics of IHI data. The proposed algorithm is used on Large Spatially Modulated Interference Spectral (LSMIS) images and is proved to provide better experimental results than the current algorithms both visually and quantitatively.

from #AlexandrosSfakianakis via Alexandros G.Sfakianakis on Inoreader http://ift.tt/1NYpqup
via IFTTT

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Δημοφιλείς αναρτήσεις